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Joint-Feature Guided Depth Map Super-Resolution
With Face Priors

Shuai Yang, Jiaying Liu, Member, IEEE, Yuming Fang, Member, IEEE, and Zongming Guo, Member, IEEE

Abstract—In this paper, we present a novel method to
super-resolve and recover the facial depth map nicely. The key
idea is to exploit the exemplar-based method to obtain the reli-
able face priors from high-quality facial depth map to improve
the depth image. Specifically, a new neighbor embedding (NE)
framework is designed for face prior learning and depth map
reconstruction. First, face components are decomposed to form
specialized dictionaries and then reconstructed, respectively. Joint
features, i.e., low-level depth, intensity cues and high-level posi-
tion cues, are put forward for robust patch similarity measure-
ment. The NE results are used to obtain the face priors of facial
structures and smooth maps, which are then combined in an uni-
form optimization framework to recover high-quality facial depth
maps. Finally, an edge enhancement process is implemented to
estimate the final high resolution depth map. Experimental results
demonstrate the superiority of our method compared to state-of-
the-art depth map super-resolution techniques on both synthetic
data and real-world data from Kinect.

Index Terms—Depth enhancement, depth map, face priors,
Kinect, neighbor embedding (NE), super-resolution (SR).

I. INTRODUCTION

N RECENT years, with the development of consumer-

level depth cameras such as time-of-flight and Microsoft
Kinect, depth images gain increasing popularity and have been
extensively studied. Since the depth map is more robust to
the environment and can provide spatial information, it has
been widely used in cybernetics applications. Many works
concerning depth images have been carried out, including
scene classification [1], 3-D modeling [2], object detection [3],
human activity detection [4] and posture reconstruction [5], as
well as human face recognition [6]. More depth-sensor-based
computer vision applications are comprehensively reviewed
in [7]. Unfortunately, raw depth maps obtained by the sensor
are often far from the satisfactory. The low resolution (LR) and
the degradation of sampled depth maps become a critical issue
and limit the applications of depth information significantly.
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To facilitate the use of depth data, many researchers have
focused on the research of depth super-resolution (SR), by
which a high resolution (HR) depth map is reconstructed from
an LR input. The methods for general depth map SR can be
divided into three categories: 1) multiple depth map fusion;
2) image-guided depth map SR; and 3) single depth map SR.
Multiple depth map fusion techniques [8]-[10] merge sev-
eral unaligned low-quality depth maps of one same scene to
reconstruct a high-quality depth map. However, multiple depth
maps may not be available, while a corresponding high-quality
color image is usually available and can help the SR process.
In this kind of image-guided depth map SR [11]-[13], high
frequency components in color images are used as the guid-
ance to improve the depth map recovery. Recently, depth map
SR using stereo-vision-assisted model has also been devel-
oped. Given a pair of color images and a low-resolution depth
map as inputs, this model uses the stereo matching theory to
further improve the depth map SR process [14]-[16] and even
to accomplish a tougher depth estimation task [17]. Single
depth map SR [18]-[20] recovers depth information with a
single low-quality input. This method often takes exemplar-
based strategy to learn from extra data, which makes up for
the lack of multiple frames or color images. Most existing
studies above focus on the general depth map SR. Much less
has been done to use face prior information to improve facial
depth map SR.

In this paper, we propose an exemplar-based approach to
deal with image-guided facial depth map SR. For facial depth
reconstruction, examplar-based strategy is superior because
human faces share regular patterns that can be learned as pri-
ors to help reconstruction. A new neighbor embedding (NE)
SR framework is designed, in which external examples can
be directly used as dictionaries to form high-quality facial
priors. We present adaptations of NE for general depth map
SR, which focuses on the depth boundary recovery. Moreover,
our method exploits face priors accurately by considering both
low-level and high-level cues of depth, intensity and position
of facial components. By integrating learned facial structure
and smoothness priors into an uniform optimization frame-
work, our method achieves high-quality results from a severely
degraded LR depth map and its corresponding HR color image.
To the best of our knowledge, this is the first work that incor-
porates these two important facial priors into a unified NE
optimization framework.

The performance of our method is evaluated with state-of-
the-art depth map SR methods. Experimental results demon-
strate the superior of our method in both synthetic facial depth
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maps and degraded Kinect-captured face data. In summary, the
main contributions of this paper are as follows.

1) Edge-Aware NE for Depth Map SR: We propose an
edge-aware NE method in which high-quality edge map
is learned based on both depth cues and color cues, and a
constrained optimization function that matches the char-
acteristics of depth maps is designed to obtain the sharp
and clean edges.

2) Joint Scale-Independent DIP (Depth, Intensity, and
Position) Feature: We propose scale-robust joint feature
that combines high-level and low-level cues to effec-
tively handle the ambiguity problem between HR/LR
patches and between intensity/depth patches, which
helps learn accurate facial priors.

3) Face Prior Analysis and Utilization in NE Framework:
We propose a dual gradient regularization (DGR) opti-
mization to impose learned facial structure and smooth-
ness priors onto the raw depth map to recover distinct
face structures and smooth out noise simultaneously. We
show that face structures can be well recovered without
over-smoothing by taking full use of face priors in this
unified NE framework.

The rest of this paper is organized as follows. In Section II,
we review related works in image-guided depth map SR, edge-
aware SR, and NE. In Section III, the details of the proposed
algorithm is presented. We validate our method by comparing
it with state-of-the-art image-guided depth map SR algorithms
on both synthetic data and real-world data from Kinect in
Section IV. Finally, we conclude this paper in Section V.

II. RELATED WORK

In this section, we discuss related approaches associated
with image-guided depth map SR, edge-aware SR, and NE.

A. Image-Guided Depth Map Super-Resolution

For image-guided depth map SR, filter-based meth-
ods [21]-[23] are widely adopted by early works. They usually
filter the depth map adaptively according to the depth struc-
tures and color intensities. Yang et al. [24] iteratively applied
a bilateral filter to the cost volume in the stereo vision lit-
erature. Liu er al. [25] proposed to use geodesic distance to
calculate the filter weight and recover sharper edges. Local-
linear-model-based guided filter [11] shows superiority in
computational efficiency and gradient preservation. But it
tends to over-smooth regions where values in the guidance
image are close to each other. Tan et al. [26] improved guided
filter using a spatial adaptive scheme to prevent blurring edges.
However, since the color of human faces lacks changes, the
filter weights can be misled. Thus, it is not suitable to apply
these methods on human faces.

In recent years, constrained optimization methods have
been developed for image-guided depth map SR. In [27], an
Markov random filed (MRF) formulation for depth map SR
is introduced. Yang et al. [28] formulated the depth refine-
ment as a minimization of auto-regressive prediction errors.
In [29], guided by the structures in the color image, the depth
map is upsampled using a weighted least squares optimization.
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Ferstl et al. [12] regarded the depth image recovery problem
as a global energy optimization problem using total general-
ized variation (TGV) regularization. For these approaches, the
performance depends on good image priors as the regulariza-
tion term to constrain the optimization. When applying these
methods to facial depth maps, defining a universal face prior
artificially is a tough task. Intuitively, we can obtain face priors
through learning the external dataset.

Exemplar-based methods [13], [30], or learning-based meth-
ods for depth map enhancement attempt to model statistical
dependencies between intensity and depth through proper dic-
tionaries. Li et al. [31] trained a joint dictionary consisting of
both the gradient of the depth map and the edges of the color
image. However, this method does not consider the disconti-
nuities between color textures and depth edges. To tackle this
problem, Kwon er al. [32] proposed the normalized absolute
gradient dot product to predict the coincidence between depth
edges and intensity edges and Kiechle er al. [13] proposed
to directly learn the dependencies between depth and inten-
sity using co-sparse analysis model, resulting in promising
performance. Different from these related studies, our method
goes further by considering high-level face position prior for
accurate nearest neighbor searching.

B. Edge-Aware Super-Resolution

Edge preserving is an important topic in SR. Tai et al. [33]
proposed to use point spread function guided by curve-
ness map to reconstruct HR color images. Meanwhile, the
NE method in [34] preserves edges by classifying image
patches into two types (edge/non-edge), and searching sim-
ilar patches in the training patches that are of the same
type, but with no additional edge enhancement process.
Li et al [35] proposed to preserve edges by combining
low-frequent images and the high-frequent gradient images
learned using neighborhood regression. By comparison, our
method learns edge priors based on both depth cues and
color cues, and uses TV regularization weighted by learned
edge priors to preserve edges, which matches the char-
acteristics of depth maps to obtain sharper and cleaner
edges.

C. Neighbor Embedding

NE assumes that image patches in LR and HR images
form manifolds with the similar local geometry and neigh-
borhood relationships. Chang et al. [36] introduced locally
linear embedding for image SR. Local geometry features were
characterized by linearly representing a feature vector with its
similar patches in the feature space. The HR patches were
reconstructed as weighted averages of neighbors in the HR
space, using the same coefficients estimated in the LR space.
The recent anchored neighborhood regression (ANR) [37]
proposed a joint NE with sparse learned dictionaries to anchor
the neighborhood embedding of a given LR patch to the near-
est atoms in the dictionary. In addition, the ANR approach
adopted the ridge regression and precomputed the correspond-
ing embedding projection matrices, which reduced algorithm
complexity.
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Framework of the proposed method. We first decompose a whole face into facial components based on the HR color image and reconstruct them,

respectively. Joint features, including low-level depth, intensity cues, and high-level position cues are extracted to represent each patch for robust nearest
neighbor searching. The face priors of facial structures and smooth map estimated by these nearest neighbors are used to recover the facial depth map. In
addition, our method further enhances depth boundaries and makes them clean and sharp using learned edge maps.

Many researches [38]-[43] have adopted NE framework
to learn high-quality face information for face hallucination.
The pioneering work in [38] assumes that similar textures are
shared by the patches located at the same position of face
images and proposed a position-based NE framework. The
main problem is that it requires face images in the training set
and testing set to be well aligned, or the inaccurate position
prior will degrade the reconstruction results. The subsequent
works incorporate face position prior based on [38] and mostly
improve it by designing new sparsity priors [39]-[41] or local-
ity priors [41]-[43]. Our method surpasses these methods in
that: 1) we do not require the training set and testing set to
be well or roughly aligned and 2) we consider facial struc-
ture prior and facial smoothness prior that are crucial for
facial depth map reconstruction but ignored by these existing
methods.

III. PROPOSED METHOD

Fig. 1 shows the framework of the proposed method. The
main idea is to obtain face priors (structures and smooth
maps) using the proposed NE framework to improve the recon-
struction of facial depth map. First of all, we introduce the
proposed edge-aware NE method for general depth map SR.
The method uses learned edge maps to enhance depth bound-
aries and make them clean and sharp. We use this method as a
baseline and further propose a joint-feature-based depth map
recovery method with learned face prior to address the SR
problem for faces. Specifically, we first decompose a whole
face into facial components based on the HR color image and
reconstruct them, respectively. Then, we propose joint scale-
independent DIP features to measure the patch similarity for
robust nearest neighbor searching. The face priors estimated
by these nearest neighbors are finally used to recover the facial
depth map.

A. Edge-Aware Neighbor Embedding for Depth
Map Super-Resolution

This section presents the proposed edge-aware NE method
for general depth map SR. The conventional NE [36] restores

images using coupled dictionaries. We use X and Y to represent
LR and HR depth maps, and x and y to represent LR and
HR patches. In addition, we use I to denote the HR color
image and each LR depth patch x is accompanied with an
HR color patch z. Given a target LR depth map X; as input,
we estimate the target HR depth map Y; with the help of the
coupled dictionaries D = {Dy, Dy} = {xi, yi}Y |, where xi/y!
are paired LR/HR patches from external source depth maps
and N represents the dictionary size.

Our framework follows standard procedures in NE SR. The

main procedures can be summarized as follows.

1) For each patch x! in X;, find the set N7 of K near-
est neighbors in D, and use the corresponding HR
neighbors A/} in Dy to reconstruct y;.

2) Construct Y; using overlapped patches y'.

To find accurate nearest neighbors, we combine depth cues

and intensity cues. The patch similarity is measured by

2
. d
dist(xr, x5) = o — X113 + we ||z — 2%

ey

2

where w, is the weight to combine depth and intensity cues.
z%92¢ depicts the edge information of I. It is obtained as
the maximum gradient magnitude among the RGB channels.
Based on (1), we use nearest neighbor sea;ching (K-NN) to
find the K neighbors N! = [x{',x?, ..., x)X] of x!, and the
optimal reconstruction coefficients can be solved by
N P2 i|?
argmin|lx; — V' + ufe[ @
al
where p is the regularization term coefficient. The counterpart
y; is then obtained by applying the same coefficient to the
corresponding HR neighbors /\/'y’ =y, yE, ...,y
i =N, 3)
Finally, we average the overlapped patches yf to construct the
raw target HR depth map Y;*%.

Edges are of particular importance in textureless depth
map [20]. However, traditional SR methods often suffer edge
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Proposed edge-aware NE method produces clean and sharp edges. The RMSE between the results in (c) and (d) against (e) are 3.09 and 2.74,

respectively. In this example, the raw depth map is upsampled by 4x. (a) Color. (b) E;. (¢) Y;*V. (d) Y;(v = 0.8). (e) Ground truth.

blurring problem. To solve this problem, we propose a TV-
based edge enhancement method. The main idea is to use
total variation (TV) regularization to smooth two sides of
the edge while keeping large gradients on the edge. To
accomplish this task, we first estimate HR edge map E; of
Y;. Let e(-) denotes the edge map extraction operation and
eNY) = [e(V{), (), ..., e(y¥)]. The edge map of yi can
be estimated by ¢! = e(N)a'. Then, we average ¢; to form
the estimated edge map E;l E; is the combination of depth
cues and intensity cues

E, = max (Ef’ , Ef) )

where Ef = e(l;). Fig. 2(b) shows an example of E;. Next, a
TV map is derived to indicate where to smooth

Mrv = R(Y™) ® (1 — E)). 5)

In the above equation, R(Y;*V) is the local variance of Y;*V.
Specifically, the local variance at pixel (i, j) is the variance of
depth values in the patch y?i-w centered at pixel (i, /) in Y;*V

R(Y™),; = min(l, Var(yl%-w))

which has high values near the edge. Meanwhile (1 — E;) has
low values on the edge. ® is the element-wise multiplication
to combine R(Y;*¥) and (1 — E;). Fig. 3(b) shows an example
of Mty. Finally, the TV regularization is performed on Y;*"
(for simplicity, we denote Y™ as djp)

(6)

Y, = arg mdin Ui(d, doy) + 1.V (d) (7

where
Ui(d, do) = [Mc ® (d — do)lI3 (8)
V(d) = Mty @ Vidlly + [M1rv @ Vid| . (9)

U, is the data term. The confidence map M, = max(v, 1 —E;)
is added based on the fact that pixel values on the edge are less
reliable and v controls the edge sharpness of the optimization
results. V is the TV regularization term weighted by Mty. A,
is the weight to combine two terms. As shown in Fig. 3(d)—(f),
under the guidance of My, depth values at one side of the
edge get uniformed and depth values at different sides of the
edge are separated. The performance of our edge enhancement
is illustrated by the comparison in Fig. 2(c) and (d).

In the following, we describe our main contributions on how
we integrate face priors with this baseline method to improve
facial depth map reconstruction quality.
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Fig. 3. Illustrations for the TV term to enhance the edges. The edges in
raw super-resolved depth map. (a) ¥;*V is refined under the guidance of the
TV map. (b) Mty. (c) Cropped zoomed region of (b). Pixels are colorized
for better visualization. (d) Pixel with high Mty weight is under strong TV
constraints (represented as red arrows) to have similar depth with its adjacent
pixels. After edge enhancement, (f) ¥; has shaper edges than (e) Y;*V.

B. Joint Scale-Independent Feature Representation
for Patches

For image-guided depth map recovery problem, two issues
must be addressed. The first is the scale problem for depth
map. Color is an inherent changeless features for human face
but the depth of a face will change along with its distance to
the depth sensor. The second is the low correlation between
color and depth. For example, one may find two similar skin-
colored patches have very different depth values. To tackle
these issues, in this section, we introduce the joint DIP feature
to improve the nearest neighbor searching for facial depth map.
For robustness, we extract scale-independent depth, intensity,
and position features from the depth and color patches to
represent the raw x;.
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Fig. 4. Facial component decomposition and joint DIP feature to improve the nearest neighbor searching. (a) Face image with detected landmarks. (b) Facial
component regions. (c) Target patch is shown in the yellow rectangle. To better recognize the content of an patch, expanded boundaries are added as shown
in the blue rectangle. For space saving, the corresponding depth map is not shown. (d) Four most similar patches of (c) obtained using different methods.
First row: component decomposition + DIP feature. Second row: DIP feature without component decomposition. Last row: component decomposition with

only depth feature.

1) Facial Component Decomposition: We start with a face
detection and landmark localization [44]. Each face is anno-
tated by landmark points that locate facial components of
interest. As shown in Fig. 4(b), we concentrate on the eye,
nose, and mouth regions. These component regions together
with the whole face region form four specialized dictionaries
Diie {1,2,3,4}. And each region of the target image is
reconstructed using the corresponding dictionaries. For sim-
plicity, we use D to refer to the four dictionaries D' in the
following sections.

The benefits of the facial component decomposition are
obvious.

1) After decomposition, each patch is implicitly classified.
With the help of this high-level classification cue, the
search spaces for similar patches are restricted and the
ambiguity problem between LR/HR pairs is relieved,
thus obtaining more accurate neighbors, as shown in the
first and second rows of Fig. 4(d).

2) Each component is aligned implicitly after facial com-
ponent decomposition. Therefore, the localization of a
patch in its corresponding region is meaningful and
can be used as an important cue for nearest neighbor
searching. Thus, we propose the joint DIP features.

2) Joint Scale-Independent DIP Features: We represent
patch x' as its joint DIP features: F(x') = {x/, ¢/, p}, where x'
is the depth feature. ¢! describes the intensity feature of the
color image. Furthermore, p’ depicts the position feature.

1) Depth Feature: x = [Vx; V2x] consists of the first-

order and second-order gradients of the depth map.
The gradients consider relative depth changes inde-
pendent of geometric scales. Physically, the first-order
gradients depict relative elevations of face sense organs
and the second-order gradients evaluate the smooth-
ness of faces. Both are well-defined features for facial
depth maps.

2) Intensity Feature: ¢ = [Z 1O contains edge and
intensity information. z"°™ is the normalized intensity
with zero means to cope with the scale problem. In addi-
tion to the edge information, we also consider to use
the intensity information because human faces share cer-
tain color patterns that are correlated with facial depth.

edge; z

Moreover, the intensity information is less degraded and
thus more reliable than the depth information.

3) Position Feature: p = [u/W; v/H], where (u,v) are the
coordinates of the patch center and [W, H] are the width
and height of the facial component region. As described
in the last section, the structures (and therefore, the
positions) of the eyes, nose, and mouth in their corre-
sponding regions are relatively stationary, which means
nearby positions share reliable similar patches.

Here, we briefly analyze the complementarity of the
proposed features that jointly alleviate the ambiguity problem
in nearest neighbor search. The two low-level cues of depth
and intensity are complementary in that the former ensures
fidelity of face structures while the latter provides high-quality
cues to make up for the former’s degradation. Meanwhile,
position feature considers high-level face priors to help alle-
viate the ambiguity problem in depth and intensity features.
And yet the abstract position feature itself has no information
on depth and requires depth/intensity cues to locate similar
depth patches.

Given the joint scale-independent DIP features, we formu-
late a measure for two patches

dist(xz, x5) = Ilxy — X113 + weller — ¢sll3 + wpllpr — psl3 (10)

where w. and w), are the weights to combine the depth, inten-
sity, and position cues. The effect of the DIP feature for nearest
neighbor searching is illustrated by the comparison in the first
and last rows in Fig. 4(d). From this figure, we can see that
by jointly considering high-level and low-level features, the
ambiguity problem is effective resolved and we are capable to
find reliable similar patches for learning.

C. Examplar-Based Face Prior Learning

To overcome the severe noise and quantization artifacts
in the LR depth map, we learn two key face priors from
the clean HR dictionary D, to recovery the degraded facial
depth map. The first prior is the facial structures, which
depict relative elevations of face sense organs. In this paper,
these relative elevations are measured by the first-order gradi-
ents. The second prior is the facial smooth map My, which
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(e)

(d

Performance of the DGR. (a) Raw upsampled result Y;*". (b) Learned face priors. First row is the facial structures VY;*V. Second row is the facial

smooth map M;. Both are shown as the x component and y component. (c), (d), and (e) are reconstructed results Y; using TV optimization, single gradient
optimization and the proposed DGR optimization, respectively. The depth contrast is enhanced for better visualization.

indicates the smooth region of the face, for instance, the
cheeks. The smoothness can be naturally evaluated by the
second-order gradients. Given a target patch x/, we therefore
find its K nearest neighbors A based on (10) and obtain
the corresponding HR nearest neighbors ./\/y’ . Their first-order

gradients V/\/yi [Vy?, Vyéz, ..., VyK] and second-order
gradients Vz./\/yi = [sz?, sz?, ..., V2yiK] are calculated.
Then the optimal reconstruction coefficient o is calculated
following (2) and is applied to N, e(/\/'yi), VN, and V2./\/yi:

(o4 €ls Wyl V21| = [ (A7) VA V20 el )

Next, these learned patch features are merged to the image
space, resulting in the estimated raw HR depth map Y;*%, edge
map E¢, facial structure prior VY;*V, and facial smoothness
prior VZY™Y respectively. After that, (1 — V2Y™V) is applied
to the median filter to remove noise artifacts and is normalized
to finally form the facial smooth map M;. Fig. 5(b) gives an
example of learned facial structures and smooth map.

D. Advanced Depth Map Recovery With Face Priors

To recover distinct face structures while smoothing out
noises, we propose a novel DGR term, which impose struc-
ture and smoothness constraints by two gradients. Then we
reconstruct the facial depth map by solving the following opti-
mization function (for simplicity, we denote Y;*V as dp and
VY™ as go):

argmin Uz (d, g, do, go) + R(d, go)

nir (12)

where the auxiliary variable g is introduced as the refined
gradient of Y; and

Us(d, g, do, g0) = *alld — doll3 + llg — goll3

is the data term, with A4 controlling the fidelity to respect the
characteristics of the target face, and

R(d,g) = |Vd — gll5 + AslIM; @ Vgll3

13)

(14)

is the proposed DGR term, with A; to control the smoothness.
The first gradient term of DGR performs structural restoration.
The second gradient term, weighted by M, enforces second-
order smoothness over the learned facial smooth region.

(d

(e)

®

Fig. 6. Facial depth data construction. (a) and (b) 3-D face mesh and the
corresponding texture from BU-3DFE dataset. (¢) and (d) Color image and
the synthetic facial depth map to form dictionaries. (e) Clean LR depth map
for SR. (f) LR depth map with simulated degradations for SR.

Here, we discuss the superiority of the proposed DGR
optimization. First, compared to the widely used TV term,
which favors constant solutions and results in stepping arti-
facts, DGR term favors piecewise smooth gradients (second
order smoothness), which accords with the normal physi-
cal structures of human faces. Second, the usage of the
second gradient term brings another benefit of strong denois-
ing ability. It is illustrated by the comparison in Fig. 5(d)
and (e), which exhibit optimization results with and with-
out ||M; ® Vg||%. The proposed DGR term outperforms single
gradient regularization (SGR) term in smoothing out noises.

E. Multi-Scale Solution

Since the ambiguity between depth/intensity pairs and
LR/HR depth pairs will get severer when the scale differ-
ence gets greater, we take the multiscale strategy to address
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TABLE I
UPSAMPLING OF CLEAN BU-3DFE DATA

Methods Womanl Woman2 Manl Man2
2% 4x 8% 2% 4% 8% 2% 4x 8% 2% 4x 8%

Diebel et al. [27] 0.774 0.825 0.864 | 0.758 0.813 0.841 | 0.761 0.828 0.936 | 0.769 0.825 0.854
Yang et al. [24] 0.861 0.832 0.877 | 0.750 0.759 0.798 | 0.864 0.859 0919 | 0.747 0.747 0.784
He et al. [11] 0.659 0904 1.637 | 0.607 0.807 1.363 | 0.639 0.926 1.632 | 0.640 0.795 1.284
Kiechle et al. [13] | 0.604 0.624 0.801 | 0.575 0.596 0.694 | 0.574 0.596 0.863 | 0.617 0.639 0.746
Ma et al. [45] 1.037 1.009 1.050 | 0.903 0905 0.922 | 1.041 1.018 1.075 | 0.891 0.877 0.903
Ferstl et al. [12] 0.677 0.796 1.052 | 0.630 0.730 1.059 | 0.689 0.841 1.294 | 0.656 0.720 0.850
Ours 0.541 0.596 0.627 | 0.508 0.567 0.588 | 0.511 0.569 0.618 | 0.544 0.608 0.632

(b)

Fig. 7.

(b)

Visual comparison with state-of-the-art methods for 8 x upsampling on the degraded BU-3DFE dataset. Our method eliminates the noise while

effectively restoring facial structures. And the error maps demonstrate that our reconstructed depth map is highly consistent with the ground truth. (a) Ground
truth. (b) Diebel and Thrun [27]. (c) Yang et al. [24]. (d) He et al. [11]. (e) Kiechle et al. [13]. (f) Ma et al. [45]. (g) Ferstl et al. [12]. (h) Proposed method.
For visual inspection, regions highlighted by blue rectangles are enlarged, and the error maps between the recovered depth map and ground truth are shown

below the results. More examples can be found in the supplementary material.

this issue. Specifically, for the scale /, the dictionaries are
obtained using the downsampled source HR color images and
HR depth maps with factor 1/2/~!, and the reconstruction
result at scale / forms the LR target depth map at scale [ — 1.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present a comparative performance eval-
vation of the proposed method. Specifically, we detail the
experiment settings and illustrate the performance of our
method compared to state-of-the-art techniques in both syn-
thetic and Kinect-captured facial depth maps. In addition,
the effect of parameters is discussed. Finally, an experiment
on general depth map SR is also conducted to validate the
effectiveness of the proposed edge-aware NE method.

A. Methodology

1) Parameter Settings: The proposed method is imple-
mented on MATLAB R2014a platform. In the experiments,

we use n x n HR patches with an overlap of one pixel between
adjacent patches where n 7. The dictionary size N is
100000, and for each patch K = 7 nearest neighbors are
searched. For the proposed joint scale-independent DIP fea-
tures, the weights between different terms are set to w, = 9
and w, = 2n*> = 98. For the neighborhood regression, the
regularization term coefficient  in (2) is 0.15. In depth map
recovery using the DGR term, the smoothness factor A; is set
to 2. Meanwhile, another factor A4 is set to 4 for clean depth
maps and 1 for degraded depth maps. Finally, in the edge
enhancement process, the canny edge detector is used. The
parameter v to control the edge sharpness is set to 0.8 and
the factor A, of the TV term is empirically chosen as 0.015,
0.005, and 0.001 for the SR of the target LR depth map at
scale 1-3, respectively.

2) Facial Depth Data Construction for Learning and
Testing: The BU-3DFE dateset [46] is used to construct dic-
tionaries. Fig. 6(c) and (d) shows an example of the depth
map and the corresponding color image of the face data.
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TABLE 1T
UPSAMPLING OF DEGRADED BU-3DFE DATA

Method Womanl ‘Woman2 Manl Man2
cthods 2% 4x 8% 2% 4x 8% 2X 4x 8% 2X 4x 8%
Diebel et al. [27] 1.152  1.239 2.002 | 1.062 1220 2.070 | 1.068 1.229 1936 | 1.031 1.181 1.640

Yang et al. [24] 1.056 1310 1916 | 0922 1216 1.713 | 1.017 1278 1.746 | 0.887 1.185 1.645
He et al. [11] 1.180  1.373 1981 | 1.081 1.264 1.718 | 1.108 1.348 1941 | 1.057 1237 1.588
Kiechle et al. [13] 1.633  3.056 4.120 | 1.319 2806 3.884 | 1.454 2.785 3.808 | 1.339 2766 3.718
Ma et al. [45] 1.245 1385 1.771 | 1.062 1232 1564 | 1.185 1323 1.657 | 1.037 1.198 1.518
Ferstl et al. [12] 1234 1324 1.899 | 1.030 1.204 1.770 | 1.136 1.302 1.843 | 1.107 1.173 1512
baseline 2552 2590 2675 | 2.549 2552 2459 | 2397 2460 2420 | 2436 2485 2385
baseline+DGR 0914 1.112 1568 | 0.810 1.016 1.338 | 0.876 1.116 1396 | 0.836 1.043 1.374

baseline+DGR+DI 0.890 1.094 1504 | 0.799 0999 1284 | 0.864 1.102 1357 | 0.819 1.024 1317
baseline+DGR+DP 0.882 1.063 1473 | 0.790 0973 1229 | 0.840 1.048 1325 | 0.820 1.011 1.259
baseline+TV+DIP 1.194 1447 2022 | 1.020 1314 1.813 | 1.046 1.368 1.781 | 1.042 1302 1.775
baseline+SGR+DIP | 1432 1211 1472 | 1354 1.139 1259 | 1.304 1.152 1342 | 1.307 1.132  1.290
baseline+DGR+DIP | 0.869 1.039 1.421 | 0.782 0949 1.187 | 0.827 1.023 1.295 | 0.812 0988 1.211

Fig. 8. Visual comparison of the proposed method with and without the key components of the DIP features and the DGR term for 8 x upsampling on the
degraded BU-3DFE dataset. These two key components help to obtain high-quality face priors and produce superior performance over other state-of-the-art
methods. (a) Input color image and LR depth map. (b) He et al. [11]. (c) Kiechle et al. [13]. (d) Ma et al. [45]. (e) Ferstl et al. [12]. (f) Our baseline. (g) Our
baseline + DGR optimization. (h) Our baseline + DGR optimization + DIP feature. (i) Ground truth. More examples can be found in the supplementary
material.

RMSE:1.379 RMSE:1.407

RMSE:1.284 RMSE:1.330

(b)

Fig. 9. Comparison of the 3-D surface reconstruction for 4x upsampling on the degraded Florence Superface dataset. The RMSE is shown at the bottom
of the reconstructed depth maps. We show that 3-D reconstruction accuracy can be well improved by the proposed method. Our method obtains the lowest
RMSE, indicating the effectiveness of our method quantitatively. As shown by the blue arrow (the tip of nose in the images), our result is most similar to the
ground truth among the compared results. (a) Ground truth. (b) Ma et al. [45]. (c) Ferstl et al. [12]. (d) Ours.

We take 70 3-D face models and synthesize depth maps using In the testing phase, we use the rest of the face models in the
their z-axis data. Color images are obtained from the textured BU-3DFE dateset [46] and the Florence Superface dataset [47]
models. to form our testing data for synthetic facial depth map SR.
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Fig. 10. Comparison on Kinect face data. For real-world face data, our method recovers 3-D surfaces that best match the normal facial physical structures.

(a) Color. (b) Raw. (c) Ferstl et al. [12]. (d) Kiechle er al. [13]. (e) Ours.

As reported in [48], distance-dependent noise and quantiza-
tion error are two main degradations for Kinect depth data.
To simulate real-world consumer-level depth cameras, these
two artifacts are added. In particular, distance-dependent noise
that satisfies a Gaussian distribution N(0, xd?) is added, where
k = 1.43 x 107 is Kinect-oriented constant [48] and d is
the original depth. In our case, we set the distance (depth)
between the tip of nose and the camera as 1.2 m. After that,
the noisy depth map is quantized using quantization steps of
3 mm. An example of the degradation simulation is shown in
Fig. 6(e) and (f). We refer to [48] and [49] for details of the
Kinect degradation.

Besides, we have collected several face data from Kinect 2.0
for real-world applications. In the experiment, we use a three-
scale strategy. Specifically, the raw Kinect depth map is first
aligned to the corresponding HR color image using nearest
neighbor interpolation and then downsampled by a factor of 8
to obtain the target LR depth map for recovery.

B. Performance Evaluation With Synthetic Facial
Depth Map

We compare our method with state-of-the-art image-guided
SR methods on synthetic depth maps derived from 3-D

face models in the BU-3DFE dateset [46] and the Florence
Superface dataset [47]. Both clean and degraded cases are
considered.

1) Clean BU-3DFE Dateset: We apply the proposed
method to LR noise-free facial depth maps. We compare with
Diebel’s and Thrun’s MRF-based method [27], Yang et al.’s
3-D joint bilateral filter method [24], He et al.’s guided filter
method [11], Ma et al.’s weighted median filter method [45],
Kiechle er al.’s bimodal co-sparse analysis method [13],
and Ferstl er al.’s TGV method [12]. The last three meth-
ods can be representative for state-of-the-art filter-based,
optimization-based, and exemplar-based techniques, respec-
tively. The MATLAB reimplementation of Diebel’s and Yang’s
methods can be found in [24] and [27]. The softwares
of He’s, Ma’s, Kiechle’s, and Ferstl’s methods are avail-
able on their project websites [11]-[13], [45]. The train-
ing data used for [13] is identical to that used in our
method. Table I reports the comparison of 2x, 4x, and
8% upsampling in terms of root-mean-square error (RMSE).
Kiechle et al.’s method [13] and the proposed method
obtains lowest RMSE, indicating that the depth reconstruc-
tion can be well improved through learning from high-quality
depth maps.
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Effect of the parameters. (a) Weight w), of the position term. (b) Weight wc of the intensity term. (c) Nearest neighbor number K. (d) Dictionary

size N. Here, we show the gains of RMSE instead of the original RMSE for better comparisons. It is computed by subtracting the RMSE obtained using the
smallest parameter (e.g., wp =0, we =0, K = 1) from the original RMSE. Lower values indicate more accurate results.

2) Degraded BU-3DFE Dateset: To show how our algo-
rithm stands out from other state-of-the-art methods, we
conduct an experiment on the SR of facial depth maps that
have severe noise and quantization problems. For visual com-
parison, 8x upsampled depth maps for Woman3 and Man?2
are shown in Fig. 7. Please enlarge and view these figures on
the screen for better comparison. Without sufficient reliable
depth information, the filter-based methods [11], [24], [45]
produce distinct texture copying artifacts. Diebel and Thrun’s
method [27] and Ferstl et al.’s method [12] does well in
denoising but tends to produce over-smooth results, in which
the nose details are mostly lost. The Kiechle et al.’s learning-
based method [13] is severely affected by the noises and even
produces some impulsive noises. In comparison, our method is
capable of utilizing the low-level intensity and high-level posi-
tion information to obtain high-quality face priors to improve
the reconstruction. From the zoomed regions of the wing
of nose, the depth is recovered to match the normal facial
physical structures.

For quantitative comparison, recovery results in terms of
RMSE are reported in Table II, and our method obtains the
lowest RMSE for all cases. Comparisons are also presented
for our approach without and with the key components of
the DIP features and the DGR term. We use the proposed
edge-aware NE as baseline and the high RMSE indicates
that unreliable input can severely degrade the performance of

exemplar-based methods. It can be also seen in Fig. 8(f) that
conventional NE fails to undo noises. The errors are dramati-
cally reduced in the last row of Table II, which demonstrates
that our adaptations of the baseline method nicely address the
degradation problem in the depth refinement process. To study
the structure of the proposed DIP feature, we remove the posi-
tion cues (by setting w, = 0 and canceling facial component
decomposition) and intensity cues (by setting w. = 0), and see
the changes of RMSE. As shown in Table II, removing any one
of the cues will increase the RMSE but removing position cues
affects more. This demonstrates that the proposed DIP feature
is well designed for robust nearest neighbor search under the
degradation condition, among which the high-level position
cues contribute quite a lot. In addition, we further give the
quantitative comparison between the proposed DGR term and
TV/SGR terms in the last three rows of Table II. The RMSE
results verify the superiority of the DGR optimization. From
the error maps of Fig. 8(g) and (h), we can also see that the
DGR optimization effectively eliminates noise, and the DIP
features further help refine the facial structures, contributing
to high-quality depth maps.

3) Degraded Florence Superface Dataset: We additionally
tested our method on the Florence Superface dataset [47].
Two examples of our results are shown in Fig. 9. 3-D face
models are reconstructed using the recovered depth maps.
Ma et al.’s [45] results suffer noises and have uneven surfaces,
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Fig. 12.  Depth map 4x SR for noise-free Middlebury dataset. Our method produces sharp and clean edges. (a) He et al.’s method [11]. (b) Ferstl et al.’s
method [12]. (¢) Our results. Please enlarge and view the edges in these figures on the screen for better comparison. The results are cropped for the visualization.
Full resolution comparisons with more methods are provided in the supplementary materials.

which reduces the visual quality. Meanwhile, Ferstl et al.’s
method [12] does well in denoising, but creates some exces-
sively flat region which is at variance with physical structures
of human faces. See the nose of the woman in the second row.
By comparison, our method achieves best results in both visual
quality and quantitative evaluation. The 3-D face model syn-
thesized from our enhanced depth map is highly consistent
with the ground truth. More examples can be found in the
supplementary material.

C. Performance Evaluation With Real-World Kinect
Face Data

We also apply the proposed method to real-world Kinect
facial depth data. Fig. 10 illustrates that the proposed method
preserves most of the facial components, and the boundaries in
the side views are quite smooth. The sudden change in depth
map reconstructed by Kiechle et al.’s method [13] leads to the
stepping artifacts on 3-D surfaces. Ferstl ef al.’s method [12]
generates rough boundaries, and it fails to recover plausible
facial components, such as yielding pointy noses and concave
upper lips.

D. Effect of the Parameters

In this section, we discuss the effects of parameters. Fig. 11
illustrates the relationship between the RMSE results and the

weight w), of the position term, the weight w. of the intensity
term, nearest neighbor number K and the dictionary size N for
4x upsampling on the degraded BU-3DFE dataset.

By incorporating position cues, our method achieves more
accurate results, as shown in Fig. 11(a). It seems that our
method is robust to the choice of w, when w), € [49, 245].

The similar conclusion is found for w,. in Fig. 11(b) that the
better results are obtained by introducing intensity cue which
provides robust nearest neighbor search to depth noises. The
acceptable value for w, is within [6, 12] and the performance
will slightly drop if w, is larger than 12. The reason is that
higher weight on intensity cues will undervalue the depth cues
for the fidelity of face structures.

We observe that our method is robust to K. In a wide
range of [1, 11], the change in terms of RMSE is subtle
which is within 0.01 on average. As for the dictionary size
N, increasing N will improve our SR results. But the gain has
a marginal decreasing effect. As shown in Fig. 11(d), the expo-
nential growth of N brings only a linear decrease of RMSE.
Considering the computing complexity and memory capacity,
we set N to 100000.

In the end, the effect of the patch size n on RMSE is illus-
trated in Table III. Large patch size (e.g., n = 11, 13) makes
it hard to fit the depth structures using NE regression in (2),
thus decreasing the performance. We also observe that for 2x
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TABLE III
EFFECT OF PATCH SIZE

Average RMSE

Patch Size % = 8%
3x3 0.898 0.991 1.280
5x5 0.826 0.994 1.273
Tx7 0.823 1.000 1.279
9%x9 0.825 1.011 1.301
11x11 0.830 1.016 1.338
13x13 0.837 1.017 1.365
TABLE IV
RMSE COMPARISON FOR NOISE-FREE MIDDLEBURY DATASET
art books moebius
Methods 2X 4x 2% 4% 2X 4x
Diebel et al. [27] 3.124 3810 | 1.201 1.537 | 1.188  1.442
Yang et al. [24] 4.073  4.071 1.608 1.686 | 1.069 1.386
He et al. [11] 3.804 3804 | 1.562 1562 | 1435 1435
Ferstl et al. [12] 3.038 3.800 | 1.286 1.592 | 1.130 1.460
Ours (without TV) | 1.214 1993 | 0421 0.752 | 0471 0.774
Ours 1.125 1909 | 0.416 0.749 | 0.462 0.771

upsampling, the results improve with the increase of patch
size as a small patch size (e.g., n = 3,5) tends to overfit the
noise. For 4x and 8x upsamplings, since decreasing the res-
olution of an image is equivalent to increasing its patch size,
the overfitting problem is relieved.

E. Performance Evaluation With Middlebury Dataset

In the end, to validate the advantages of edge enhance-
ment, we tested the proposed edge-aware NE method on the
noise-free Middlebury 2005 dataset [50] provided by [12],
which contains much more distinct edges than facial depth
maps. In this experiment, our dictionaries are obtained from
the Middlebury 2006 dataset [50]. Comparisons are presented
in Table IV for our approach without and with edge enhance-
ment process as well as other related methods in terms of
RMSE. Examples of our results are also illustrated in Fig. 12.
Compared to He ef al.’s [11] and Ferstl et al.’s [12] methods,
our method yields sharper and more clean edges.

V. CONCLUSION

In this paper, we present a novel joint-feature guided depth
map SR method with face priors. A joint DIP feature is
designed to consider both low-level and high-level facial char-
acteristics for better similarity measurement. Through integrat-
ing face priors with the modified NE framework, significant
improvements on facial depth reconstruction are achieved
comparing to state-of-the-art technologies. In future work, we
will investigate the general structure and smoothness priors
and expand the applicability to the depth map reconstruction
for general scenes.
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